Vai ai contenuti
Lingua:
Italiano
English
Effettua il LOGIN al sito

 

Iscriviti alla newsletter della SGI per essere sempre aggiornato sulle ultime novità

Iscriviti qui >>

 

Rend. Online Soc. Geol. It., Vol. 17 (2011) - (DOI 10.3301/ROL.2011.44)

Carbonate deposition in a fluvial tufa system: processes and products (Corvino Valley - Southern Italy)

E. Perri (*) & E. Manzo (*) 


(*) Dipartimento di Scienze Della Terra, Università della Calabria, Ponte Bucci Cubo 15b - 87036 Rende (CS) Italy.
eperri@unical.it
 


Abstract 

In a multi-scale approach to the study of the organic and mineral components in an active barrage-type tufa system of southern Italy, neo-formed deposits, in both natural depositional sites and on inorganic substrates placed in the stream for this study, were observed and compared through one year of monitoring. Dams and lobes representing the basic morpho-facies of the deposits are composed of two depositional facies: vacuolar tufa (a mixture of phytoclastic and framestone tufa) and
stromatolitic tufa (phytoherm boundstone tufa). Three petrographic components comprise both facies: micrite and microsparite, often forming peloidal to aphanitc, laminar and dendrolitic fabrics, and sparite, which occurs as isolated to coalescent fan-shaped crystals forming botryoids or continuous crusts. All fabrics occurring in all
depositional facies are organized into layers with a more or less well-developed cyclicity, which has its best expression in stromatolitic lamination. The precipitation of all types of calcite (with Mg 1.0 to 3.2 mole % and Sr 0.5 to 0.8 mole %) takes place more or less constantly during all seasons, in spite of the low saturation state of the water (Saturation Index range is 0.75 to 0.89), within the active depositional zone; the latter extends for a few hundred microns through the external surface of the deposit. The active depositional zone has a particular micro-morphology composed of porous micro-columns (50 to 150 μm in size), separated by interstitial channels. Mineral precipitation occurs upon both external surfaces and within internal cavities of the micro-columns, while further point-sites of precipitation occur suspended within the masses of cyanobacterial tufts.
Sub-spherical mineral units, ‘nano-spheres’ (10 to 20 nm in diameter) are the basic biotic neo-precipitate. They commonly form by replacing non-living degrading organic matter and at point-sites along the external surface of living cyanobacterial sheaths. Nano-spheres agglutinate to form first rod-shaped aggregates (100 to 200 nm), which then evolve into triads of fi bres or polyhedral structures.
Successively, both triads and polyhedral solids coalesce to form larger calcite crystals (mainly tetrahedrons tens of microns in size) that represent the fundamental bricks for the construction of the micro-columns in the active depositional zone. Precipitation is attributed to the presence of a widespread biofilm that occurs in the active depositional zone; this is composed of a heterogeneous community comprising epilithic and endolithic filamentous cyanobacteria, green algae, unicellular prokaryotes, Actinobacteria and fungi, with a variable amount of extracellular polymeric substances. No precipitation takes place where the biofi lm is absent, indicating that the biological activities of the biofilm are crucial, with its living organisms and non-living organic matter. Basic aggregates of neo-precipitates do not form in association with any one particular type of organic matter substrate, but appear to be related to the seasonal temperature variation: polyhedral microcrystals mainly precipitate in the colder season, short triads in the intermediate seasons, and long triads in the warmest conditions. These three basic crystal aggregates have a petrographic counterpart, respectively in the spar, microspar and micrite.

 

KEY WORDS: Biofilm, biomineralization, carbonate deposition, microbial carbonate, Recent fl uvial tufa.

La successione sedimentaria miocenica affi orante nel settore
Nord-Orientale della Stretta di Catanzaro è costituita da depositi
terrigeni, evaporitici e carbonatici depositatesi all’interno di un
bacino sedimentario controllato da un complesso sistema di faglie
trascorrenti orientate NW-SE.
La sedimentazione ha inizio tra il Serravalliano e il Tortoniano
con i depositi di ambiente alluvionale-torrentizio del Conglomerato
del Corace seguite dalle arenarie e calcareniti di Tiriolo di ambiente
costiero che evolvono a facies schiettamente marine costituite dalle
argille marnose di Gagliano caratterizzate nella porzione superiore
da peliti euxiniche e diatomiti che segnano l’inizio della Crisi di
Salinità del Messiniano (CSM). In questa fase si depositano in
tutto il Mediterraneo, lungo i margini del bacino, facies selenitiche
e calcari micritici (Lower Evaporites). Nell’area di studio affi orano
esclusivamente le facies micritiche CdB-1 di probabile origine
batterica correlabili al CdB type 2 di MANZI et alii (2010) ed alle
facies di origine batterica di GUIDO et alii (2007), sviluppatesi durante
la prima fase della CSM tra 5,96 e 5,6 Ma. La fase successiva è
caratterizzata da una fase tettonica intra-messiniana e da un rapido
abbassamento del livello marino con lo sviluppo di un corpo caotico
costituito da slumps, blocchi di seleniti (sub-unità 1 del conglomerato
del Riato) e brecce carbonatiche (CdB-2) che evolvono verso l’alto con
trend fi ning e thinning-upward ad associazioni di facies con canali e
barre, con una drastica diminuzione dell’alimentazione intrabacinale
evaporitica e carbonatica a vantaggio di quella proveniente dalle unità
metamorfi che e plutoniche dell’Arco Calabro Peloritano.
La fase fi nale della CSM è registrata dallo sviluppo di un sistema
deposizionale fl uvio-deltizio che passa verso le aree bacinali a depositi
pelitici-sabbiosi, contenenti biofacies ad ostracodi (Lago Mare), e a
corpi selenitici in facies banded e massive di secondo ciclo.
La successione sedimentaria del settore NO della Stretta di
Catanzaro defi nisce un’architettura deposizionale riscontrabile nel
modello evolutivo proposto da ROVERI et alii (2008), caratterizzata da
corpi caotici (sub-unità 1 e 2 del conglomerato di Riato e CdB-2),
derivanti dalla cannibalizzazione dei depositi evaporitici e dei calcari
primari, e che registrano un graduale ritorno ad un’alimentazione
extra-bacinale derivante dall’erosione delle unità sedimentarie
serravallinae-tortoniane e metamorfi che-plutoniche dell’unità della
Sila.

© Società Geologica Italiana Dipartimento di Scienze della Terra, Università «La Sapienza», Piazzale Aldo Moro 5, 00185 Roma • Tel.: 06 4959390 • Fax: 06 49914154 • Mail: info@socgeol.it  C.F.80258790585